Likelihood robust optimization for data-driven problems

نویسندگان

  • Zizhuo Wang
  • Peter W. Glynn
  • Yinyu Ye
چکیده

We consider optimal decision-making problems in an uncertain environment. In particular, we consider the case in which the distribution of the input is unknown, yet there is some historical data drawn from the distribution. In this paper, we propose a new type of distributionally robust optimization model called the likelihood robust optimization (LRO) model for this class of problems. In contrast to previous work on distributionally robust optimization that focuses on certain parameters (e.g., mean, variance, etc.) of the input distribution, we exploit the historical data and define the accessible distribution set to contain only those distributions that make the observed data achieve a certain level of likelihood. Then we formulate the targeting problem as one of optimizing the expected value of the objective function under the worst-case distribution in that set. Our model avoids the over-conservativeness of some prior robust approaches by ruling out unrealistic distributions while maintaining robustness of the solution for any statistically likely outcomes. We present statistical analyses of our model using Bayesian statistics and empirical likelihood theory. Specifically, we prove the asymptotic behavior of our distribution set and establish the relationship between our model and other distributionally robust models. To test the performance of our model, we apply it to the newsvendor problem and the portfolio B Zizhuo Wang [email protected] Peter W. Glynn [email protected] Yinyu Ye [email protected] 1 Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55455, USA 2 Department of Management Science and Engineering, Stanford University, Stanford, CA 94305, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

Event-driven and Attribute-driven Robustness

Over five decades have passed since the first wave of robust optimization studies conducted by Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept aside; there is much more potential for investigating the exact nature of uncertainties to obtain intelligent robust models. For this purpose, in this study, we investigate a more refined description...

متن کامل

A heuristic light robust approach to increase the quality of robust solutions

In this paper, the optimizations problems to seek robust solutions under uncertainty are considered. The light robust approach is one of the strong and new methods to achieve robust solutions under conditions of uncertainty. In this paper, we tried to improve the quality of the solutions obtained from the Light Robust method by introducing a revised approach. Considering the problem concerned, ...

متن کامل

Application of a Cost-Driven Optimization Method in Beer Brewing Process

The final quality and cost of a manufactured product are determined to a large extent by the engineering design of the product and its production process through activities of off-line quality control methods, namely, System Design, Parameter Design and Tolerance Design. However, in the context of most non-industrialized countries, the off-line quality activities of product design and system de...

متن کامل

Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots

This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Manag. Science

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016